
Proving Possession and Retrievability within a 
Cloud Environment: A Comparative Survey  

 
Kochumol Abraham, Win Mathew John 

 

P G Department of Computer Applications,  
Marian College, Kuttikkanam P O, Idukki Dist, Kerala, India 

 

 
Abstract— Outsourcing data to a remote Cloud Service Provider 
(CSP) is a growing trend for numerous organizations alleviating the 
burden of local data storage and maintenance. While Cloud 
computing makes these advantages more appealing than ever, it also 
brings new challenging security threats towards user’s outsourced 
data. It’s of crucial importance to customers to have strong evidence 
that they actually get the service they pay for. Moreover, they need to 
verify that all their data copies are not being tampered with or 
partially deleted over time.  As a result, data owners need to be 
convinced that their data are correctly stored in the Cloud. So, one of 
the biggest concerns with cloud data storage is that of data integrity 
verification at untrusted servers. In order to solve the problem of data 
integrity checking, many schemes are proposed under different 
systems and security models. In this paper we surveyed two core 
integrity proving schemes in detail along with different methods used 
for data integrity in both the schemes. 
 
Keywords— Cloud Service Provider, Provable Data Possession, Proof 
of Retrievability. 

 
I. INTRODUCTION 

Data outsourcing brings with it many advantages. But 
associated with it are the risks involved. Though client 
cannot physically access the data from the cloud server 
directly, without client’s are either not used by client from 
a long time. Hence, there is a requirement of checking the 
data periodically for correction purpose, known as data 
integrity. Here we provide a survey on the different 
techniques of data integrity. The basic schemes for data 
integrity in cloud are Provable Data Possession (PDP) 
knowledge, cloud provider can modify or delete data which 
and Proof of Retrievability (PoR). These two schemes are 
the most active area of research in the cloud data integrity 
field.  

II. PDP AND POR 
To restore security assurances eroded by cloud 
environments, researchers have proposed two basic 
approaches to client verification of file availability and 
integrity. The cryptographic community has proposed tools 
called proofs of retrievability (PORs) and proofs of data 
possession (PDPs).PDP scheme checks that a remote cloud 
server retains a file, which consists of a collection of n 
blocks. The data owner processes the data file to generate 
some metadata to store it locally. The file is then sent to the 
server, and the owner delete the local copy of the file. The 
owner verifies the possession of file in a challenge response 
protocol. A POR is a challenge response protocol that 
enables a prover (cloud-storage provider) to demonstrate to 
a verifier (client) that a file F is retrievable, i.e., recoverable 
without any loss or corruption. The benefit of a POR over 
simple transmission of F is efficiency. The response can be 
highly compact (tens of bytes), and the verifier can 
complete the proof using a small fraction of F.As a 

standalone tool for testing file retrievability against a single 
server, though, a POR is of limited value. Detecting that a 
file is corrupted is not helpful if the file is irretrievable and 
the client has no recourse. Thus PORs are mainly useful in 
environments where F is distributed across multiple 
systems, such as independent storage services. In such 
environments, F is stored in redundant form across multiple 
servers. 

III.    RELATED WORK 
A. Static Provable Data Possession (PDP)  
The fundamental goal of the PDP scheme is to allow a 
verifier to efficiently, periodically, and securely validate 
that a remote server which is supposed to store the owner’s 
potentially very large amount of data is not cheating the 
verifier. The problem of data integrity over remote servers 
has been addressed for many years and there is a simple 
solution to tackle this problem as follows. 

1) Basic PDP Scheme based on MAC : The data owner  
computes a Message Authentication Code (MAC) of the 
whole file before outsourcing to a remote server. Keeps 
only the computed MAC on his local storage, sends the file 
to the remote server, and deletes the local copy of the file. 
Later, whenever a verifier needs to check the data integrity, 
he sends a request to retrieve the file from the archive 
service provider, re-computes the MAC of the whole file, 
and compares the re-computed MAC with the previously 
stored value.  

     2) PDP Schemes based on functions f and H
|:H

|
 is a 

one-way function, f is another function such that f(C, H| 
(File)) = H (C||File), where H - Secure hash function and C 
- Random challenge number sent from the verifier to the 
remote server. [2] 
The protocol is as follows:  
Data owner computes H| (File) and store it on the local 
storage.[2] 
To audit the file, the verifier generates a random challenge 
C, 
Computes V = f(C, H| (File)), and sends C to the remote 
server. 
The server computes R = H(C||File) and sends the response 
R to the verifier.  
To validate the file integrity, the verifier checks V ?= R. 
 

3) RSA Based PDP Schemes: 
RSA-based Homomorphic hash function[3] 

A function H is Homomorphic if, given two operation + 
and x, we have H (d+d|) = H(d) x H(d|).  The response R = 
H(d) is a homomorphic function in the data file d; H(d + 
d|) = rd+ d| rd rd|=  H(d)H(d|) mod N.[3] To find a collision 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 478



for this hash function, one has to find two messages d, d′ 
such that rd ≡ rd′, i.e., rd−d′ ≡ 1 mod N. Thus, d − d′ must be 
multiple of ϕ(N). Finding such two messages d, d′ is 
believed to be difficult since the factorization of N is 
unknown. 
Limitations  
The archive service provider has to exponentiate the entire 
data file plus the storage overhead on the verifier side. 
Solution is to use an RSA-based hash function on the 
blocks. 

RSA-based hash function on the blocks  
Fragment the file into blocks 
Fingerprint each block, and then use an RSA-based hash 
function on the blocks.  
Thus, the file F is divided into a set of m blocks: F = {b1, 
b2, . . . , bm}, where m fingerprints {Mi}1¡Âi¡Âm are 
generated for the file and stored on the verifier local storage. 
Their proposal does not require the exponentiation of the 
entire file. 
 

4)  Data Storage Commitment Schemes: 
A storage-enforcing commitment scheme (SEC) is a three-
party protocol executed between a message source S,   a 
prover P, and a verifier V. [4] 
The message source communicates the message M to the 
prover and the commitment C to the verifier.  
The verifier V may verify whether the prover is storing the 
secret by invoking a probabilistic interactive algorithm. 
This algorithm may be executed an unlimited number of 
times.  
Once the message is revealed, the verifier may check the 
commitment by running the algorithm Verify. 
This scheme has three properties called binding, concealing, 
and storage-enforcing. 
 

5)   Privacy-Preserving PDP Schemes: 
The data owner first encrypts the file,  
Sends both the encrypted file along with the encryption key 
to the remote server.  
Moreover, the data owner sends the encrypted file along 
with a key-commitment that fixes a value for the key 
without revealing the key to the TPA.  
The primary purpose of this scheme is to ensure that the 
remote server correctly possesses the client’s data along 
with the encryption key, and to prevent any information 
leakage to the TPA which is responsible for the auditing 
task[5]. Thus, clients especially with constrained 
computing resources and capabilities can resort to external 
audit party to check the integrity of outsourced data, and 
this third party auditing process should bring in no new 
vulnerabilities towards the privacy of client’s data. In 
addition to the auditing task of the TPA, it has another 
primary task which is extraction of digital contents. [6] 
     6)  PDP in Database Context based on signature 
aggregation : 
Each database record is signed before outsourcing the 
database to a remote service provider.[7]  
2 aggregation mechanisms:  
Scheme based on RSA [8] and  
Scheme based on BLS signature  [9] 
Scheme based on the RSA signature 

Each record in the database is signed as: σi = h(bi)d mod N 
where h is a one-way hash function, bi is the data record, d 
is the RSA private key, and N is the RSA modulus.  
A user issues a query to be executed over the outsourced 
database, the server processes the query and computes an 
aggregated signature σ = Σti=1 σi mod N, where t is the 
number of records in the query result. The server sends the 
query result along with the aggregated signature to the user. 
To verify the integrity of the received records, the user 
checks σe = πti=1 σi mod N, where e is the     RSA public 
key.  
Scheme based on the BLS signature  is similar to the first 
scheme but the record ∈signature σi = h(mi)x, where x  R  
Zp is a secret key. 
 
      7) PDP Schemes Based on Homomorphic Variable 
Tags(HVTs)/Homomorphic Linear Authenticators(HLAs) :  
HVTs/HLAs are unforgeable verification metadata 
constructed from the file blocks in such a way that the 
verifier can be convinced that a linear combination of  the 
file blocks is accurately computed by verifying only the 
aggregated tag/authenticator. 
Public verifiability and private verifiability.  
In public verifiability anyone  not necessarily the data 
owner  who knows the owner’s public key can challenge 
the remote server and verify that the server is still 
possessing the owner’s files. On the other side, private 
verifiability allows only the original owner (or a verifier 
with whom the original owner shares a secret key) to 
perform the auditing task.  
Two main PDP schemes 
Sampling PDP (S-PDP) and Efficient PDP (E-PDP) 
schemes. [10] 
Based on KEA1 assumption (Knowledge of Exponent 
Assumption). It focuses on the problem of auditing if an 
untrusted server stores a client’s data.  
 
B. Dynamic Provable Data Possession (DPDP) 
The PDP schemes discussed above focus on static or 
warehoused data which is essential in numerous different 
applications such as libraries, archives, and astronomical 
/medical /scientific /legal repositories. On the other side, 
Dynamic Provable Data Possession (DPDP) schemes 
investigate the dynamic file operations such as update, 
delete, append, and insert operations. There are some 
DPDP constructions in the literature satisfying different 
system requirements. 

1) Scalable DPDP: 
This scheme is based entirely on symmetric-key 
cryptography. [11] 
1. Before outsourcing, data owner pre-computes a certain 
number of short possession verification tokens, each token 
covering some set of data blocks. The actual data is then 
handed over to server.  
2. Subsequently, when data owner wants to obtain a proof 
of data possession, it challenges server with a set of 
random-looking block indices.  
3.  In turn, server must compute a short integrity check 
over the specified blocks (corresponding to the indices) and 
return it to data owner.  

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 479



For the proof to hold, the returned integrity check must 
match the corresponding value pre-computed by data 
owner. However, in this scheme data owner has the choice 
of either keeping the pre-computed tokens locally or 
outsourcing them – in encrypted form – to server. Notably, 
in the latter case, data owner’s storage overhead is constant 
regardless of the size of the outsourced data. This scheme is 
also very efficient in terms of computation and bandwidth. 

2) DPDP-I: 
Given a file F consisting of n blocks, we define an update 
as either insertion of a new block (anywhere in the file, not 
only append), or modification of an existing block, or 
deletion of any block. Therefore the update operation 
describes the most general form of modifications a client 
may wish to perform on a file. DPDP solution is based on a 
new variant of authenticated dictionaries, where rank 
information is used to organize dictionary entries[12]. Thus 
its able to support efficient authenticated operations on files 
at the block level, such as authenticated insert and delete. 
The security of the constructions using standard 
assumptions has been proved. 
      3)   DPDP II: 
The only difference between the two schemes is the 
authenticated structure used for protecting the integrity of 
the tags. It has a higher probability of detection and 
maintains logarithmic communication complexity but has 
increased update time[13]. A dynamic authenticated data 
structure called RSA tree is presented here that achieves 
constant expected query time (i.e., time to construct the 
proof), constant proof size, and O(nϵ log n) expected 
amortized update time, for a given 0 < ϵ < 1. We can add 
rank information to the RSA tree by explicitly storing ranks 
at the internal nodes. Using this data structure allows the 
server to answer O (log n) challenges with O(log n) 
communication cost since the proof for a block tag has O (1) 
size. 
   4)  Schemes in Hybrid clouds :   Collaborative PDP 
Homomorphic verifiable response is the key technique of 
collaborative PDP because it not only reduces the 
communication bandwidth, but also conceals the location 
of outsourced data in hybrid clouds. The collaborate 
integrity verification for distrusted outsourced data, in 
essence, is a multi-prover interactive proof system (IPS), so 
that the corresponding construction should satisfy the 
security requirements of IPS. Moreover, in order to ensure 
the security of verified data, this kind of construction is 
also a Multi-Prover Zero-knowledge Proof (MPZKP) 
system which can be considered as an extension of the 
notion of an interactive proof system. 
Given an assertion L, such a system satisfies three 
following properties: 
Completeness: whenever x ∈ L, there exists a strategy for 
provers that convinces the verifier 
Soundness: whenever x 6∈ L, whatever strategy the 
provers employ, they will not convince the verifier that x ∈ 
L; 
Zero-knowledge: no cheating verifier can learn anything 
other than the veracity of the statement. 
        Scalia 
A cloud storage brokerage solution that continuously 
adapts the placement of data based on its access pattern and 

subject to optimization objectives, such as storage costs. 
Scalia efficiently considers repositioning of only selected 
objects that may significantly lower the storage cost.Scalia 
can run directly at the customer premises as an integrated 
hardware and software solution (i.e., an appliance) or can 
be deployed as a hosted service across several data centers, 
putting the emphasis on providing a scalable and highly 
available architecture with no single point of failure, able to 
guarantee higher availability than the storage providers.  
C.  Multi-Copy PDP Schemes (MC-PDP Schemes) 
Suppose that a CSP offers to store n copies of an owner’s 
file on n different servers to prevent simultaneous failure of 
all copies. Thus, the data owner needs a strong evidence to 
ensure that the CSP is actually storing no less than n copies, 
all these copies are complete and correct, and the owner is 
not paying for a service that he does not get. A solution to 
this problem is to use any of the previous PDP schemes to 
separately challenge and verify the integrity of each copy 
on each server. This is certainly not a workable solution; 
cloud servers can conspire to convince the data owner that 
they store n copies of the file while indeed they only store 
one copy. 
Whenever a request for a PDP scheme execution is made to 
one of the n severs, it is forwarded to the server which is 
actually storing the single copy. The CSP can use another 
trick to prove data availability by generating the file copies 
upon a verifier’s challenge; however, there is no evidence 
that the actual copies are stored all the time. The main core 
of this cheating is that the n copies are identical making it 
trivial for the servers to deceive the owner. Therefore, one 
step towards the solution is to leave the control of the file 
copying operation in the owner’s hand to create unique 
distinguishable/differentiable copies. 

1)  Basic Multi-Copy Provable Data Possession 
(BMC-PDP) scheme : 
The data owner creates n distinct copies by encrypting the 
file under n different keys keeping these keys secret from 
the CSP. Hence, the cloud servers could not conspire by 
using one copy to answer the challenges for another. This 
natural solution enables the verifier to separately challenge 
each copy on each server using any of the PDP schemes, 
and to ensure that the CSP is possessing not less than n 
copies.  

2)  Multiple-Replica Provable Data Possession (MR-
PDP) scheme : 
Creating distinct replicas/copies of the data file by first 
encrypting the file then masking the encrypted version with 
some randomness generated from a Pseudo-Random 
Function (PRF) is being performed here[14]. 

3)  Efficient Multi-Copy Provable Data Possession 
(EMC-PDP) schemes:  
It’s based on HLA’s. In EMC-PDP models we resort to the 
diffusion property of any secure encryption scheme. 
Diffusion means that the output bits of the cipher text 
should depend on the input bits of the plain text in a very 
complex way. In an encryption scheme with strong 
diffusion property, if there is a change in one single bit of 
the plaintext, then the cipher text should completely change 
in an unpredictable way. This methodology of generating 
distinct copies is not only efficient, but also successful in 
solving the authorized users problem of the MRPDP 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 480



scheme to access the file copy received from the CSP. The 
two versions of the EMC-PDP schemes are[15]: 

Deterministic EMC-PDP (DEMC-PDP) scheme 
Probabilistic EMC-PDP (PEMC-PDP) scheme 

In the DEMC-PDP version, the CSP has to access all the 
blocks of the data file, while in the PEMC-PDP, spot 
checking is performed by validating a random subset of the 
file blocks. It is a trade-off between the performance of the 
system and the strength of the guarantee provided by the 
CSP. In the PEMC-PDP scheme, we use the same indices 
for the challenged blocks across all copies. The rationale 
behind the PEMC-PDP scheme is that checking part of the 
file is much easier than the whole of it, and thus reducing 
the computation and storage overhead on the servers side. 
    4) Pairing based provable multi-copy data possession 
(PB-PMDP) scheme 
This scheme provides an adequate guarantee that the CSP 
stores all copies that are agreed upon in the service contract, 
and these copies are intact. The authorized users can 
seamlessly access the copies received from the CSP. The 
PB-PMDP scheme supports public verifiability. 
Generating unique differentiable copies of the data file is 
the core to design a multi-copy provable data possession 
scheme[16]. Identical data copies enable the CSP to simply 
deceive the owner by storing only one copy and pretending 
that it stores multiple copies. Using a simple yet efficient 
way, the proposed scheme generates distinct copies 
utilizing the diffusion property of any secure encryption 
scheme. There will be an unpredictable complete change in 
the ciphertext, if there is a single bit change in the plaintext. 
The interaction between the authorized users and the CSP 
is considered through this methodology of generating 
distinct copies, where the former can decrypt and access a 
file copy received from the CSP without recognizing the 
copy index. Homomorphic linear authenticators (HLAs) are 
basic building blocks in the proposed scheme.  
    5) Distributed and Replicated (DR-DPDP) scheme 
DR-DPDP is a scheme that provides transparent 
distribution and replication of user data over multiple 
servers. There are three entities in the model. The client, 
who stores data on the CSP, challenges the CSP to check 
the integrity of data, and updates the stored data[17]. The 
organizer, who is one of the servers in CSP and is 
responsible for communication with the client and other 
servers (acts as a gateway or load-balancer). The servers, 
who store the user data, perform provable updates on behalf 
of the client, and respond to the client challenges coming 
via the organizer. They only communicate with the 
organizer and there is no inter-server communication. 
It is very important to observe that even though it seems 
like a central entity, the organizer is not expected to 
perform any disk operations or expensive group operations 
(e.g., exponentiation). He will only perform simple hashing, 
and work with a very small skip list. Hence, his load will be 
very light, making it very easy to replicate the organizer to 
prevent it from becoming a bottleneck or single-point-of-
failure.  
D.  Static POR Schemes 

1) Basic scheme: 
Its a scheme which does not involve the encryption of the 
whole data. Only a few bits of data per data block are 

encrypted thus reducing the computational overhead on the 
clients. The client storage overhead is also minimized as it 
does not store any data with it. Hence this scheme suits 
well for thin clients [18]. 
 

 
 
It reduces the computational and storage overhead of the 
client as well as server. It also minimizes the size of the 
proof of data integrity so as to reduce the network 
bandwidth consumption. 

2)   POR for Large files: 
Here  the verifier stores only a single cryptographic key—
irrespective of the size and number of the files whose 
retrievability it seeks to verify—as well as a small amount 
of dynamic state (some tens of bits) for each file. (One 
simple variant of this protocol allows for the storage of no 
dynamic state, but yields weaker security.) More strikingly, 
and somewhat counter intuitively, this scheme requires that 
the prover access only a small portion of a (large) file F in 
the course of a POR. In fact, the portion of F “touched” by 
the prover is essentially independent of the length of F and 
would, in a typical parameterization, include just hundreds 
or thousands of data blocks. Briefly, this POR protocol 
encrypts F and randomly embeds a set of randomly-valued 
check 
blocks called sentinels.[19] The use of encryption here 
renders the sentinels indistinguishable from other file 
blocks. The verifier challenges the prover by specifying the 
positions of a collection of sentinels and asking the prover 
to return the associated sentinel values. If the prover has 
modified or deleted a substantial portion of F, then with 
high probability it will also have suppressed a number of 
sentinels. It is therefore unlikely to respond correctly to the 
verifier. To protect against corruption by the prover of a 
small portion of F, we also employ error-correcting codes.  

3) Compact POR : 
Here two new short, efficient homomorphic authenticators 
are being used. The first, based on PRFs, gives a proof-of-
retrievability scheme secure in the standard model. The 
second, based on BLS signatures , gives a proofof-
retrievability scheme with public verifiability secure in the 
random oracle model.[20] 

4)  General framework for POR : 
A “spot-checking” mechanism is being used in the 
challenge-response protocol to detect adversarial behavior. 
In each challenge, a subset of file blocks is sampled, and 
the results of a computation over these blocks is returned to 
the client. The returned results are checked using some 
additional information embedded into the file at encoding 
time.[21] 
 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 481



5) HAIL: 
HAIL manages file integrity and availability across a 
collection of servers or independent storage services. It 
makes use of PORs as building blocks by which storage 
resources can be tested and reallocated when failures are 
detected. HAIL does so in a way that transcends the basic 
single-server design of PORs and instead exploits both 
within-server redundancy and cross-server redundancy. 
HAIL relies on a single trusted verifier—e.g., a client or a 
service acting on behalf of a client—that interacts with 
servers to verify the integrity of stored files[22]. 

E.  Dynamic POR 
1)   Data Correctness: 

This is a data correctness scheme which involves the 
encryption of the few bits of data per data block thus 
reducing the computational overhead on the clients. Its 
based on the fact that high probability of security can be 
achieved by encrypting fewer bits instead of encrypting the 
whole data. The client storage overhead is also minimized 
as it does not store any data with it and it reduces 
bandwidth requirements. Hence this scheme suits well for 
small memory devices and low power devices. In this data 
integrity protocol the TPA needs to store only a single 
cryptographic key irrespective of the size of the data file F 
and two functions which generate a random sequence. The 
TPA does not store any data with it. The TPA before 
storing the file at the archive, preprocesses the file and 
appends some meta data to the file and stores at the archive. 
At the time of verification the TPA uses this meta data to 
verify the integrity of the data. Here the proof of data 
integrity protocol just checks the integrity of data. But the 
data can be stored, that is duplicated at redundant data 
centers to prevent the data loss from natural calamities. If 
the data has to be modified which involves updation, 
insertion and deletion of data at the client side, it requires 
an additional encryption of fewer data bits. So this scheme 
supports dynamic behavior of data.[23] 

2) Public Auditability : 
Solutions that meet various requirements such as high 
scheme efficiency, stateless verification, bounded use of 
queries and retrievability of data, etc. are required in a 
cloud computing environment. All schemes presented till 
now fall into two categories: private auditability and public 
auditability. Although schemes with private auditability can 
achieve higher scheme efficiency, public auditability 
allows anyone, not just the client (data owner), to challenge 
the cloud server for correctness of data storage while 
keeping no private information. To ensure cloud data 
storage security, it is critical to enable a third party auditor 
(TPA) to evaluate the service quality from an objective and 
independent perspective. Public auditability also allows 
clients to delegate the integrity verification tasks to TPA 
while they themselves can be unreliable or not be able to 
commit necessary computation resources performing 
continuous verifications. Another major concern is how to 
construct verification protocols that can accommodate 
dynamic data files. In this paper, we explored the problem 
of providing simultaneous public auditability and data 
dynamics for remote data integrity check in Cloud 
Computing. Our construction is deliberately designed to 
meet these two important goals while efficiency being kept 

closely in mind. To achieve efficient data dynamics, we 
improve the existing proof of storage models by 
manipulating the classic Merkle Hash Tree (MHT) 
construction for block tag authentication.[24] To support 
efficient handling of multiple auditing tasks, we further 
explore the technique of bilinear aggregate signature to 
extend our main result into a multi-user setting, where TPA 
can perform multiple auditing tasks simultaneously. 
Extensive security and performance analysis show that the 
proposed scheme is highly efficient and provably secure. 

3) Public Verifiability: 
This is a scheme with public verifiability: any TPA in 
possession of the public key can act as a verifier.  
This protocol has the following features: 
Public verification for storage correctness assurance: to 
allow anyone, not just the clients who originally stored the 
file on cloud servers, to have the capability to verify the 
correctness of the stored data on demand.[25] 
Dynamic data operation support: to allow the clients to 
perform block-level operations on the data files while 
maintaining the same level of data correctness assurance. 
The design should be as efficient as possible so as to ensure 
the seamless integration of public verifiability and dynamic 
data operation support. 
Blockless verification: no challenged file blocks should be 
retrieved by the verifier (e.g., TPA) during verification 
process for both efficiency and security concerns.  
Stateless verification: to eliminate the need for state 
information maintenance at the verifier side   between 
audits throughout the long term of data storage. 

4)  A Dynamic PoR  Scheme with O(logn) Complexity : 
This scheme can be summarized as the following three 
stages: 
Pre-process stage: Before outsourcing the file to the server, 
the client will preprocess the file and generate metadata. 
Then the client will outsource the file to the server and only 
keep the meta data[26]. 
Verification stage: The client will periodically check the 
integrity of its data. It will query the server randomly and 
ask the server to provide a proof. By verifying the proof 
with meta data, the client can detect the file corruption with 
high probability. 
Update stage: The client will send the server a request to 
update the file. After each update, the server will prove to 
the client that the update is correctly executed. 

5)  E POR: 
This is an efficient and secure POR scheme. In this scheme, 
a data block consists of s group elements and subsets of  l 
blocks are accessed in each verification [27]. The storage 
overhead is 1=s of the data file size, and communication 
cost is O(1) bits per verification, and the computation cost 
is O(s) group exponentiations on the server side (prover) 
and O(`) group addition/multiplication/PRF on the client 
(verifier) side. It’s proved that the proposed POR scheme is 
secure under a variant of Strong Diffie-Hellman 
Assumption. 

IV. COMPARATIVE STUDY 
This comparative study provides a consolidated report of all 
the techniques of the PDP schemes Static, Dynamic and 
multi-copy PDP Schemes in single and hybrid clouds and 
the various POR schemes. 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 482



 

Static PDP Schemes 

Scheme Technique used Advantage Disadvantage 

Basic MAC Secure and efficient 
The communication complexity is linear with the 
queried data size which is impractical especially when 
the available bandwidth is limited. 

PDI 
Secure hash 
function 

Checking part of the file is much easier than the 
whole of it. 

1. Limited number of audits per file. 
2. In each verification, the remote server has to do the 

exponentiation over the entire file. 
3. Storage overhead on the verifier side. 

Challenge-   
response 

RSA Homomorphic 
hash function 

The freshness of the response computation by 
the server is guaranteed by the fact that a 
challenge is never reused before reboot of the 
server. 

Although the protocol does not require exponentiation 
of the entire file, a local copy of the fingerprints whose 
size is linear in the number of file blocks  must be stored 
on the verifier side. 

Data Storage 
Commitment 

n-Power 
Computational 
Diffie-Hellman (n-
PCDH) assumption  

Makes use of storage space as large as the 
client’s data 

1. It only ensures that the server is storing something 
at least as large as the original data file but not 
necessarily the file itself. 

2. In addition, the verifier’s public key is about twice 
as large as the data file. 

Privacy 
Preserving 

Encryption 
An external Third Party Auditor (TPA) can 
verify the integrity of files stored     by a remote 
server without knowing any of the file contents. 

1. The number of times a particular data item can be   
verified is limited and must be fixed beforehand. 

2. Storage overhead on the TPA 
3. Lack of support for stateless verification 
4. Very high communication complexity 

Database 
Signature 
Aggregation 

Signature aggregation enables bandwidth and 
computation efficient integrity verification of 
query replies. 

1. Does not fulfill the completeness requirement. 
2. Fails to provide block less verification 

S-PDP & E-PDP 
HVT’S, HLA’S 
KEA1 assumption 
 

Client is convinced of data possession, without 
actually having to retrieve file blocks. 
Provide data format independence.  
Offers public verifiability. 

1. HVTs are based on RSA and thus are relatively 
long. 

2. The time taken to generate the tags is too long. 
3. Since there is no indicator for the file identifier in 

the block tag, a malicious server can cheat by using 
blocks from different files if the data owner uses the 
same secret keys. 

Dynamic PDP Schemes 

Scalable PDP 

Based on 
cryptographic Hash 
function & symmetric-
key encryption 

1. Requires no bulk encryption of 
outsourced data and no data expansion 
due to additional sentinel blocks. 

2. Supports secure and efficient dynamic 
operations on outsourced data blocks. 

1. Number of updates and challenges is limited and 
fixed in advance. 

2. It does not support block insertion operation 

DPDP I 
Rank-based 
authenticated skip list 

1. Supports efficient authenticated 
operations on files at the block level, such 
as authenticated insert and delete. 

2. Supports data possession guarantees of a 
hierarchical file system as well as file 
data. 

It does not support efficient verification of the indices of 
the blocks, which are used as query and update 
parameters . 

DPDP II RSA trees Blockless verification of data. It has increased update time. 

Dynamic PDP Schemes in Hybrid clouds 

Cooperative PDP 

HVR, HIH, IPS, 
MPZKPS interactive 
proof system and multi-
prover zero-knowledge 
proof system 

1. Multi-prover zero-knowledge proof 
system (MP-ZKPS), which has 
completeness, knowledge soundness, 
and zero-knowledge properties. 

2. It has security against data leakage 
attack and tag forgery attack. 

Latency overhead and scalability of prototype has not 
been described. 

Scalia Multi- datacenter 
High data durability and minimizes the 
storage cost for clients 

Latency overhead and scalability of prototype has not 
been described. 

Multi-Copy PDP Schemes(MC-PDP Schemes) 

BMC-PDP Encryption 
It generate unique 
distinguishable/differentiable 
copies of the data file. 

1. The computation and communication   
complexities of the verification task grow linearly 
with the number of copies. 

2. Key management is a severe problem. 

MR-PDP Signature aggregation 
Each unique replica can be produced at the 
time of the challenge it can generate 
further replicas on demand 

1. It does not address how the authorized users   of 
the data owner can access the file copies from the 
cloud servers. 

2. Computation overhead on both the verifier   and 
server side. 

3. Storage overhead 

DEMC-PDP Bilinear Map/Pairing. 
1. Strongest guarantee at the expense of 

the storage overhead. 
2. Shortest verification time 

Storage and computation cost is larger. 

PEMC-PDP Bilinear Map/Pairing 
Lowest storage overhead on the server side 
by using spot checking. 

Storage and computation cost is larger. 

PB-PMDP BLS HLAs 

1. It provides an evidence to the customers 
that all outsourced copies are actually 
stored and remain intact. 

2. It allows authorized to seamlessly 
access the file copies stored by the CSP 
Supports public verifiability. 

3. Secure against colluding servers. 

While identifying corrupted copies the cost of extra 
storage, communication, and computation overheads 
occurs. 

DR-DPDP 
Rank-based 
authenticated skip list 

It provides transparent distribution and 
replication of user data over multiple 
servers. 

The computation time in the organizer becomes greater 
than that of the servers. 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 483



 

 
 

REFERENCES 
[1] K. Zeng, “Publicly verifiable remote data integrity,” in ICICS, 2008, 

pp. 419–434. 
 [2] Deswarte, J-J. Quisquater, and A. Sa¨ıdane ,“Remote integrity 

checking,” in 6th Working Conference on Integrity and Internal 
Control in Information Systems (IICIS), S. J. L. Strous, Ed., 2003, 
pp. 1–11. 

 [3] D. L. G. Filho and P. S. L. M. Barreto, “Demonstrating data 
possession and uncheatable data transfer,” Cryptology ePrint 
Archive, Report 2006/150, 2006. 

 [4] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives 
enforcing communication and storage complexity,” in FC'02: 
Proceedings of the 6th International Conference on Financial 
Cryptography, Berlin, Heidelberg, 2003, pp. 120–135. 

 [5] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, “Auditing 
to keep online storage services honest,” in HOTOS'07: Proceedings 
of the 11th USENIX workshop on Hot topics in operating systems, 
Berkeley, CA, USA, 2007, pp. 1–6. 

 [6] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-preserving 
audit and extraction of digital contents,” Cryptology ePrint Archive, 
Report 2008/186, 2008. 

 [7] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and 
integrity in outsourced databases,” Trans. Storage, vol. 2, no. 2, 2006. 

 [8] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining 
digital signatures and public-key cryptosystems,” Commun. ACM, 
vol. 26, no. 1, 1983. 

 [9]  D. Boneh, B. Lynn, and H. Shacham, “Short signatures from 
the weil pairing,” in ASIACRYPT '01: Proceedings of the 7th 

Static POR Schemes 

Scheme Technique used Advantages Disadvantages 

Basic Encryption 

Reduces the computational and storage 
overhead of the client as well as cloud 
storage server. 
It also minimizes the size of the proof of 
data integrity so as to reduce the network 
bandwidth consumption. 

The number of queries that can be asked by 
the client is fixed apriori. But this number is 
quite large and can be sufficient if the 
period of data storage is short. It will be a 
challenge to increase the number of queries 
using this scheme. 

POR for large files Sentinel-based scheme 
Ensures both possession and retrievability 
of files on archive service systems 

Computationally cumbersome especially 
when the data to be encrypted is large.  
There will also be storage overhead at the 
server, partly due to the newly inserted 
sentinels and partly due to the error 
correcting codes that are inserted.  
Larger storage requirements on the prover.  

Public verifiability 
scheme 

Homomorphic authenticators 
& BLS signatures 

Unlimited number of queries and requires 
less communication overhead 

Used only for static data 

2 phase protocol Spot-checking 

Lower storage overhead, tolerates higher 
error rates, 
and can be proven secure in a stronger 
adversarial setting. 

Used only for static data 

HAIL MAC 

Strong file-intactness assurance: 
Low overhead 
Strong adversarial model: 
Direct client-server communication: 

Used only for static data 

Dynamic POR Schemes 

Basic 
Generation of metadata and 
its encryption 

Reduces the computational and storage 
overhead of the client as well as the server.  
Minimizes the size of proof of data integrity 
so as to reduce the network 
bandwidth consumption. 

Auditing multiple files from multiple clients 
simultaneously is not possible. 

Public auditability 
Bilinear aggregate signature 
and Merkle Hash Tree 

Public auditability for storage correctness 
assurance Dynamic data operation support 
Blockless verification 

Efficiency of the scheme remains unclear. 

Public Verifiability BLS, MHT 

Public verification for storage correctness 
assurance 
Dynamic data operation support 
Blockless verification  
Stateless verification 

Using the classic MHT construction will 
cause an efficiency problem. 

CMBT Scheme 
Cloud Merkle B+ tree , BLS 
signature 

It is possible to detect file corruptions with 
high probability even if the CSP tries to 
hide them. 
 Moreover, this scheme is able to support 
dynamic updates while keeps the same 
detection probability of file corruption.  
The worst case performance is when 
compared with other schemes is O (logn). 

Less efficent 

E-POR Diffie-Hellman Assumption 
Efficient and secure. 
It requires only a constant number of 
communication bits per verification. 

- 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 484



International Conference on the Theory and application of 
Cryptology and Information Security, London, UK, 2001, pp. 514–
532.     

[10] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. 
Peterson, and D. Song, “Provable data possession at untrusted 
stores,” in CCS '07: Proceedings of the 14th ACM Conference    on 
Computerand Communications Security, New York, NY, USA, 2007, 
pp. 598–609. 

[11] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,            
“Scalable and efficient provable data possession,” in   Secure Comm 
'08: Proceedings of the 4th International Conference on Security and 
Privacy in Communication Netowrks, New York, NY, USA, 2008, 
pp. 1–10. 

[12] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public 
verifiability and data dynamics for storage security in cloud 
computing,” in ESORICS'09: Proceedings of the 14th European 
Conference on Research in Computer Security, Berlin, Heidelberg, 
2009, pp. 355–370. 

[13] Z. H. G.-J. A. H. H. Yan Zhu, Huaixi Wang      and S. S. Yau, 
“Cooperative provable data possession,” Cryptology ePrint Archive, 
Report 2010/234, 2010.A.Juels and B. S. Kaliski, “PORs: Proofs of 
Retrievability for large files,” in CCS'07: Proceedings of the 14th 
ACM Conference on Computer and Communications Security, 2007, 
pp. 584–597. 

[14] R. Curtmola, O. Khan, R. Burns, and G.  Ateniese, “MR-  PDP: 
Multiple-Replica Provable DataPossession,” in 28th IEEE ICDCS, 
2008, pp. 411–420. 

[15] Ayad F.Barsoum and M.Anwar Hasan Provable   Possession and 
Replication of Data  over Cloud Servers. 

[16] Ayad F. Barsoum, M. Anwar Hasan. “Integrity Verification of 
Multiple Data Copies over Untrusted Cloud Servers” 

[17] Mohammad Etemad and Alptekin Koc University, Istanbul, 
Turkey.” Transparent, Distributed, and Replicated Dynamic 
Provable  Data Possession”. 

[18] Sravan Kumar R, Ashutosh Saxena,  Data Integrity    Proofs    in 
Cloud Storage, 978-1-4244-8953-4/11/@ 2011 IEEE. 

[19]    Ari Juels and Burton S. Kaliski,  PORs: Proofs of 
Retrievability for Large Files, CCS '07 Proceedings of the 14th 
ACM conference on Computer and communications security, 978-1-
59593-703-2,USA 

[20] Hovav Shacham1 and Brent Waters, Compact Proofs of   
Retrievability, J. Pieprzyk (Ed.): ASIACRYPT 2008, LNCS 5350, 
pp. 90–107, 2008 International Association for Cryptologic Research 
2008. 

[21] Kevin D. Bowers, Ari Juels, Alina Oprea, Proofs of Retrievability: 
Theory and Implementation, CCSW’09, Journal of Systems and 
Software, v.85 n.5, p.1083-1095, May, 2012. 

[22] Kevin D. Bowers, Ari Juels, Alina Oprea, HAIL: A High-     
Availability and Integrity Layer for Cloud Storage, ACM  978-1-
60558-784-4 /09/11,  USA. 

[23] Malathi.M, Murugesan. T, A Scheme for Checking Data Correctness 
in the Cloud, 2012 International Conference on Information and 
Network Technology (ICINT 2012) IPCSIT vol. 37 (2012). 

[24] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li, 
Enabling Public Auditability and Data Dynamics for Storage 
Security in Cloud Computing, IEEE Trans. Parallel Distrib. Systems. 

[25] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li,    
Enabling Public Verifiability and Data Dynamic for Storage Security 
in Cloud Computing, IEEE Trans.  Parallel Distrib. Systems. 

[26] Zhen Mo Yian Zhou Shigang Chen , A Dynamic Proof of  
Retrievability (PoR) Scheme  with O(logn) Complexity, IEEE Trans. 
Parallel Distrib. Systems. 

[27]    Jia Xu and Ee-Chien Chang, Towards Efficient Proofs of 
Retrievability in Cloud Storage, IEEE Trans. Parallel Distrib. 
Systems

 
 

Kochumol Abraham et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 478-485

www.ijcsit.com 485




